Slawomir Sander (Grzonka)

Slawomir Grzonka, Andreas Karwath, Frederic Dijoux, and Wolfram Burgard

Activity-based Estimation of Human Trajectories
We present a novel approach to incrementally determine the trajectory of a person in 3D based on its motions and activities in real-time. In our algorithm, we estimate the motions and activities of the user given the data obtained from a motion capture suit equipped with several inertial measurement units (IMUs). These activities include walking up and down staircases as well as opening and closing doors. We interpret the first two types of activities as motion constraints and door handling events as landmark detections in a graph-based simultaneous localization and mapping (SLAM) framework. Since we cannot distinguish between individual doors, we employ a multihypothesis tracking approach on top of the SLAM procedure to deal with the high data-association uncertainty. As a result, we are able to accurately and robustly recover the trajectory of the person. Additionally we present an algorithm to build approximate geometrical and the topological maps based on the estimated trajectory and detected activities. We evaluate our approach in practical experiments carried out with different subjects and in various environments.

Bibtex:

@article{grzonka12tro_mvn,
author = {Grzonka, S. and Karwath, A. and Dijoux, F. and Burgard, W.},
title = {{Activity-based Estimation of Human Trajectories}},
journal = IEEE Transactions on Robotics (T-RO),
number = {1},
month = {2},
volume = {8},
year = {2012},
pages = {234--245}
}



Document (pdf file):

full paper
videos