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Abstract—In 2006, Olsonet al. presented a novel approach to
address the graph-based simultaneous localization and mamg
problem by applying stochastic gradient descent to minimie
the error introduced by constraints. Together with multi-level
relaxation, this is one of the most robust and efficient maxi-
mum likelihood techniques published so far. In this paper, ve
present an extension of Olson’s algorithm. It applies a nove
parameterization of the nodes in the graph that significanty
improves the performance and enables us to cope with arbitny
network topologies. The latter allows us to bound the compbdty
of the algorithm to the size of the mapped area and not to
the length of the trajectory as it is the case with both previais
approaches. We implemented our technique and compared it to

.m”'“."e"e' relaxatlon and Olson’s algorlthm. As we demontrate Fig. 1. The left image shows an uncorrected network with madlOOk poses
in simulated and in real world experiments, our approach ,n4 450k constraints. The right image depicts the netwdee abplying our
converges faster than the other approaches and yields ac@te  error minimization approach (100 iterations, 17s on a P4 @t 1.8GHz).
maps of the environment.
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. INTRODUCTION network [2, 5, 7, 13]. Depending on the used technique,

Models of the environment are needed for a wide range different parts of the network are updated in each iteration
robotic applications, including search and rescue, autedhaThe strategy for defining and performing these local updates
vacuum cleaning, and many others. Learning maps has thdras a significant impact on the convergence speed.
fore been a major research focus in the robotics communityOur approach uses a tree structure to define and efficiently
over the last decades. Learning maps under uncertaintyujsdate local regions in each iteration. The poses of the indi
often referred to as the simultaneous localization and mapeual nodes are represented in an incremental fashionhwhic
ping (SLAM) problem. In the literature, a large variety ofallows the algorithm to automatically update successoeaod
solutions to this problem can be found. The approaches gnai@ur approach extends Olson’s algorithm [13] and converges
differ due to the underlying estimation technique such aignificantly faster to a network configuration with a lowaatr
extended Kalman filters, information filters, particle fiteor Additionally, we are able to bound the complexity to the size
least-square error minimization techniques. of the environment and not to the length of the trajectory.

In this paper, we consider the so-called “graph-based” orThe remainder of this paper is organized as follows. After
“network-based” formulation of the SLAM problem in whichdiscussing the related work, Section Il explains the graph
the poses of the robot are modeled by nodes in a graph Based formulation of the mapping problem. Subsequently, we
5, 6, 7, 11, 13]. Constraints between poses resulting fraamplain the usage of stochastic gradient descent to findanktw
observations or from odometry are encoded in the edgesnfigurations with small errors. Section V introduces our
between the nodes. tree parameterization and in Section VI we explain how to

The goal of an algorithm designed to solve this problewbtain such a parameterization tree from robot data. Welinal
is to find the configuration of the nodes that maximizes th@esent our experimental results in Section VII.
observation likelihood encoded in the constraints. Oftare
refers to the negative observation likelihood as the errdhe Il. RELATED WORK
energy in the network. An alternative view to the problem is Mapping techniques for mobile robots can be classified
given by the spring-mass model in physics. In this view, theccording to the underlying estimation technique. The most
nodes are regarded as masses and the constraints as sppopalar approaches are extended Kalman filters (EKFs)separ
connected to the masses. The minimal energy configurationestended information filters, particle filters, and leastiag
the springs and masses describes a solution to the mapm@n@r minimization approaches. The effectiveness of thé& EK
problem. Figure 1 depicts such a constraint network asapproaches comes from the fact that they estimate a fully
motivating example. correlated posterior about landmark maps and robot po€gs [1

A popular solution to this class of problems are iterativé4]. Their weakness lies in the strong assumptions that have
approaches. They can be used to either correct all posede made on both, the robot motion model and the sensor
simultaneously [6, 9, 11] or to locally update parts of thaeoise. Moreover, the landmarks are assumed to be uniquely



identifiable. There exist techniques [12] to deal with unkno ~ One motivation of our approach is to build a system that
data association in the SLAM context, however, if certaidepends on the size of the environment and not explicitely
assumptions are violated the filter is likely to diverge [8]. on the length of the trajectory. We designed our approach in
Frese's TreeMap algorithm [4] can be applied to compute way that it can be applied to arbitrary networks. As we
nonlinear map estimates. It relies on a strong topologioalll show in the remainder of this paper, the ability to use
assumption on the map to perform sparsification of the iarbitrary networks allows us to prune the trajectory so that
formation matrix. This approximation ignores small erdrie the complexity of our approach depends only on the size
the information matrix. In this way, Frese is able to perforraf the environment. Furthermore, our approach proposes a
an update inD(logn) wheren is the number of features.  more efficient parameterization of the network when applyin
An alternative approach is to find maximum likelihood mapgradient descent.
by least square error minimization. The idea is to compute ll. ON GRAPH-BASED SLAM

a network of relations given the sequence of sensor read- h h-based S ¢ L
ings. These relations represent the spatial constrairielea Most approaches to graph-based SLAM focus on estimating

the poses of the robot. In this paper, we also follow thfshe most-likely configuration of the nodes and are therefore

way of formulating the SLAM problem. Lu and Milios [11] referred to as maximum-lik_elihood (ML) techniques [2, 5, 6
first applied this approach in robotics to address the SLAM™ 13].hThey do ngt Eonader to :c:orrr:putebthe _];_l::I posterlorh
problem using a kind of brute force method. Their approa out the map an the poses of the ro ot. The approac
seeks to optimize the whole network at once. Gutmann a%esented in this paper also belongs .to this cl.ass Of. methods
Konolige [6] proposed an effective way for constructingfsuc The gpal of_graph—based ML mapplng_al_gorlthms IS tq find
a network and for detecting loop closures while running & e configuration of the nodes that maximizes the likelihood
incremental estimation algorithm. Howard al. [7] apply of the observations. For a more precise formulation comside
relaxation to localize the robot and build a map. Ducke&lf'e following def|n|t|on§f: _ _
et al. [2] propose the usage of Gauss-Seidel relaxation t¢ X = (71 zn)" is a vector of parameters which
minimize the error in the network of constraints. In order to describes a configuration of the nodes. Note that the
make the problem linear, they assume knowledge about the Parameters; do not need to be the absolute poses of the
orientation of the robot. Frese al. [5] propose a variant of ~ Nodes. They are arbitrary variables which can be mapped
Gauss-Seidel relaxation called multi-level relaxationL@®}. to the poses of the nodes in real world coordinates.
It applies relaxation at different resolutions. MLR is reped ~ * 9;i describes a constraint between the noglend :. It
to provide very good results and is probably the best relamat ~ '€fers to an observation of nogeseen from node. These
technique in the SLAM context at the moment. congtramts_are the _edges in the graph structure. .

Note that such maximum likelihood techniques as well as® $%i IS the information matrix modeling the uncertainty
our method focus on computing the best map and assume that of 9. _ i _ _
the data association is given. The ATLAS framework [1] or ® Ji(¥) is @ function that computes a zero noise observation
hierarchical SLAM [3], for example, can be used to obtain according to the current configuration of the nogleznd
such data associations (constraints). They also applylmaplo ¢ It returns an observation Of nod&seer] from node.
optimization procedure to compute a consistent map. One ca>iven a constraint between noglend node, we can define
replace such optimization procedures by our algorithm andthe error e;; introduced by the constraint as
this way make ATLAS or hierarchical SLAM more efficient. ei(x) = fii(x) =6 (1)

The approach closest to the work presented here is the ) '
work of Olson et al. [13]. They apply stochastic gradientdS Well as theesidual r;;
descent to reqluce the error in the.network. They also propose ri(x) = —eji(x). 2)
a representation of the nodes which enables the algorithm to . . _ )
perform efficient updates. The approach of Olsanal. is Note that at the. equilibrium point,;; is equal to O since
one of the current state-of-the-art approaches for optirgiz /(%) = d;i- In this case, an observation perfectly matches
networks of constraints. In contrast to their techniquer; of1® current configuration of the nodes. Assuming a Gaussian

approach uses a different parameterization of the nodesOfervation error, the negative log likelihood of an obagon

the network that better takes into account the topology &fi IS

the environment. This results in a faster convergence of our 7 (x) (Fi(x) =807 Qi (f5:(x) = 0;) ()

algorithm. ' _ e»-(x)TQ-»e-»(x)' 4)
Highly sophisticated optimization techniques such as MLR T

or Olson’s algorithm are restricted to networks that ardt bui rji (%) Qjiri(x). (®)

in an incremental way. They require as input a sequence ofunder the assumption that the observations are independent

robot poses according to the traveled path. First, this miékethe overall negative log likelihood of a configuratiaris
difficult to use these techniques in the context of multiaibb

<L

SLAM. Second, the complexity of the algorithm depends on Fx) = Z Fji(x) (6)
the length of the trajectory traveled by the robot and not on (i)
the size of the environment. This dependency prevents to use = Z 75i (%) T Qjim54 (x). @)

these approaches in the context of lifelong map learning. (j,i)yec



HereC = {{(j1,i1),...,{jm,in)} is set of pairs of indices oscillations, one uses the learning rate to reduce theidract
for which a constrainb;, ;. exists. of the residual which is used for updating the variables.
The goal of a ML approach is to find the configuratieh This makes the solutions of the different sub-problems to
of the nodes that maximizes the likelihood of the observatio asymptotically converge towards an equilibrium point thsat
This can be written as the solution reported by the algorithm.
This framework allows us to iteratively reduce the error
given the network of constraints. The optimization apphgac
IV, STOCHASTIC GRADIENT DESCENT hoyvever, I(_eaves open how thg nqdes are represented (parame-
' terized). Since the parameterization defines also thetatric
FORMAXIMUM LIKELIHOOD MAPPING of the Jacobians, it has a strong influence on the performance
Olson et al. [13] propose to use a variant of the preof the algorithm.
conditioned stochastic gradient descent (SGD) to addhess t The next section addresses the problem of how to parame-

SLAM problem. The approach minimizes Eq. (8) by iterativelyerize a graph in order to efficiently carry out the optimiaat
selecting a constraingj, i) and by moving the nodes of thegpproach.

network in order to decrease the error introduced by the

selected constraint. Compared to the standard formulation V. NETWORK PARAMETERIZATIONS

of gradient descent, the constraints are not optimized as ahe posesp = {pi,...,pn} Of the nodes define the
whole but individually. The nodes are updated according tmnfiguration of the network. The poses can be described by a
the following equation: vector of parameters such that a bijective mappingbetween

L ot H=-11TO . m.. p andx exists
e I T ©) % = g(p) p=g ' (x). (12)

x* = argmin F(x). (8)

X

Axji As previously explained, in each iteration SGD decomposes

Herex is the set of variables describing the locations of thtae problem into a set of subproblems and solves them

poses in the network afl ! is a preconditioning matrix/;; successively. In this work, a subproblem is defined as the

is the Jacobian of;, §2;; is the information matrix capturing optimization of a single constraint. Different solutiomsthe

the uncertainty of the observation, and is the residual. individual subproblems can have antagonistic effects when
Reading the termAx;; of Eq. (9) from right to left gives combining them.

an intuition about the sequential procedure used in SGD:  The parameterization defines also the subset of variables

« ;i is the residual which is the opposite of the error vectoihat are modified by a single constraint update. A good
Changing the network configuration in the direction of thearameterization defines the subproblems in a way that the
residualr;; will decrease the errat;;. combination step leads only to small changes of the indalidu

» ;; represents the information matrix of a constraingolutions.

Multiplying it with r;; scales the residual components
according to the informati(_)n gncoded in the co_nstraint.A_ Incremental Pose Parameterization
. Jﬁ: The role of the Jacobian is to map the residual term

: - ! Olsonet al. propose the so-called incremental pose param-
into a set of variations in the parameter space.

terization. Given a set of node locatigiisand given a fixed

. . ) e
« H is the Hessian of the system _and It represents t}a?der on the nodes, the incremental parametgrean be
curvature of the error function. This allows us to Scalgomputed as follows

the variations resulting from the Jacobian depending on
the curvature of the error surface. We actually use an Ti = DPi— Pi-1- (13)

apporximation ofH which is computed as _ _
Note thatz; is computed as the difference between two

H ~ Z injSJ};. (10) subsequent nodes and not by motion composition. Under this
(3,%) parameterization, the error in the global reference frame (

Rather than inverting the full Hessian which is computzij—'catecj by primed variables) has the following form

tionally expensive, we approximate it by €9i = p;—(pi ® ;) (14)

H' ~ [diag(H)]™! 11 J L
[diag(H)] (11) ( 3 xk) . (H m) 5. as)
e A is a learning rate which decreases with the iteration k=i+1 k=1

of SGD and which makes the system to converge to an P

equilibrium point. . . - .
| . he algorithm d h I bl where® is the motion composition operator according to Lu
n practice, the algorithm decomposes the overall probleg, \ijios [11] andR} the homogenous rotation matrix of the

@nto_ many Sma"ef problemg by optimizing the ConStraimﬁararmter xk. The termRy, is defined as the rotation matrix
!nd|V|duaIIy. Each time a §0Iut|on for one of th_ese Sme of the pose py,. The information matrix in the global reference
is found, the network is updated accordingly. ObV'OUSI¥rame can be computed as

updating the different constraints one after each othehear
opposite effects on a subset of variables. To avoid infimitiv Q;Z = R,Q;RT. (16)



According to Olsoret al. [13], neglecting the contribution B. Tree Parameterization
of the angular terms ofy, ..., z; to the Jacobian results in |nvestigating a different parameterization which preserv
the following simplified form the advantages of the incremental one but overcomes its
; drawbacks is the main motivation for our approach. First,
) our method should be able to deal with arbitrary network
Tji = Z T with I =(0--- 0 \I/ 0---0). (17 topologies. This would enable us to compress ythe graph
k=i k whenever robot revisits a place. As a result, the size of the
network would be proportional to the visited area and not to
the length of the trajectory. Second, the number of nodes in
the graph updated by each constraint should mainly depend
on the topology of the environment. For example, in case of a
loop-closure a large number of nodes need to be updated but
in all other situations the update is limited to a small numbe
5 nodes in order to keep the interactions between congdrain
small.
Our idea is to first construct a spanning tree from the (arbi-
trary) graph. Given such a tree, we define the parametarizati
for a node as

Here0 is the 3 by 3 zero matrix and is the 3 by 3 identity.
Updating the network based on the constrajt) with
such an Jacobian results in keeping the nodxed and in
distributing the residual along all nodes betwgeand:.
Olsonet al. weight the residual proportional -4 which is
the number of nodes involved in the constraint. The parame
x of the nodek with k =i+ 1,...,j is updated as follows

Axk = /\wk Q (18)

;’iT;ia
where the weightuvy, is computed as
. Zi = DPi — Pparent(i)s (20)
J - . .
e 1 1 wherep,,..ent (i) refers to the parent of nodein the spanning
wy, = (j — 1) [ Z Dm] Dy, (19) tree. As defined in Eq. (20), the tree stores the differences

m=itl between poses. As a consequence, one needs to process the

In Eq. (19), D, are the matrices containing the diagondf€€ up to the root to compute the actual pose of a node in the
elements of the:* block of the HessiarH. Intuitively, each 9lobal reference frame. _ _
variable is updated proportional to the uncertainty abbat t However, to obtain only the difference between two arbi-
variable. Note that the simple form of the Jacobians allog/s {fary nodes, one needs to traverse the tree from the first node
to update the parameter vector for each node individually §8wards to the first common ancestor of both nodes and then
expressed by Eq. (18). downwards to the second node. The same holds for computing

The approach presented in this section is currently onesof fine error of a constraint. We refer to the nodes one needs to

best solutions to ML mapping. However, it has the followiniaverse on the tree as the path of a constraint. For example,
drawbacks: i 1s the path from node to node; for the constraingj, 7).

The path can be divided into an ascending ﬁéﬁ] of the

« In practice, the incremental parameterization cannot deal th starting f dband a d di aVPéHt dei
with arbitrarily connected networks. This results from thB&1N starting from nodeand a descending pat; - 1o node;.
can then compute the error in the global frame by

approximation made in Eq. (17), in which the anguIaYVe

components are ignored when computing the Jacobian. e;i = pj— (pi ® ;) (21)
_This approximation i_s only valid if the subsequent nodes = p;j — (pi + Rids) (22)
in Eg. (13) are spatially close. Furthermore, the way the

error is distributed over the network assumes that the - Zka - Zxk[*] — Ridji. (23)
nodes are ordered according to poses along the trajectory. ket ki-lepl

This results in adding a large number of nodes. to t_rlﬁ’ere R; is the rotation matrix of the posg;. It can be
network whenever the robot travels for a long time iRomputed according to the structure of the tree as the ptoduc
the same region. This requirement prevents an approgghne individual rotation matrices along the path to thetroo
from merging multiple nodes into a single one. Merging Nte that this tree does not replace the graph as an internal
or pruning nodes, however, is a necessary preconditiongigyresentation. The tree only defines the parameterizafion
allow the robot lifelong map learning. the nodes. It can furthermore be used to define an order in
« When updating a constraint between the nogemdi, \yhich the optimization algorithm can efficiently procese th
the parameterization requires to change thenodes. As constraints as we will explain in the remainder of this secti
a result, each node is likely to be updated by severgh jjustration, Figure 2 (a) and (b) depict two graphs and
constraints. This leads to a high interaction between COfssible parameterization trees.
straints and will typically reduce the convergence speedsjmilar to Eqg. (16), we can express the information matrix
of SGD. For example, the nodewill be updated by all associated to a constraint in the global frame by
constraints(j’,i’) with i’ < k < j’. Note that using an , -
intelligent lookup structure, this operation can be carrie Qj; RiSYiR; . (24)
outinO(log n) time wheren is the number of nodesinthe  As proposed in [13], we neglect the contribution of the
network [13]. Therefore, this is a problem of convergeng@tation matrixR; in the computation of the Jacobian. This ap-
speed of SGD and not a computational problem. proximation speeds up the computation significantly. Witho
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Fig. 2. (a) and (b): Two small example graphs and the trees tesdetermine the parameterizations. The small grey cdiomscare constraints introduced
by observations where black ones result from odometry. (@d3sing the constraints ordered according to the nodethét smallest level in the path avoids
the recomputation of rotational component of all parentse $ame holds for subtrees with different root nodes on theedavel.

this approximation the update of a single constraint infb@sn  Our parameterization implies that updating a constraitit wi

the poses of all nodes up to the root. never change the configuration of a node with a level smaller
The approximation leads to the following Jacobian: than the level of the constraint. Based on this knowledge, we
, can sort the constraints according to their level and pces
Jii = Z L1 = Z Zyi- (25)  them in that order. As a result, it is sufficient to access the
ki eplf] ki-lepl parent ofz;; to compute the rotational component of the node

Compared to the approach described in the previous sectiégﬁ:cﬂ dnodes with a smaller level thay have already been

the number of updated variables per constraint is in practic Figure 2 (c) illustrates such a situation. The constréint)

\S/zr:rilllbelreswrg?r?eru;wlg?] _tr;e 'I'trzeée\./ve(i);r: ts?uip;(;gcronliggi?z[\s with the path4, 3, 2, 7 does not change any noc_ie with a smaller
' level than the one of nod2 It also does not influence other
i -1 subtrees on the same level such as the nodes involved in the
_ 1 constraint(9, 8).
wi = |Pjil Z Dy} Dy (26) In the fo<llovv>ing section, we describe how we actually build
mePs the tree given the trajectory of a robot or an arbitrary nekwo
whereDy, is thek-th diagonal block element &f. This results as input.

in the following update rule for the variable, V]. CONSTRUCTION OF THESPANNING TREE

,/jﬁ,;'ia (27) When constructing the parameterization tree, we diststgui
two different situations. First, we assume that the inpua is
sequence of positions belonging to a trajectory traveled by
the robot. Second, we explain how to build the tree given an
1 ifap € 777[-?] arbitrary graph of relations.
) - (28) In the first case, the subsequent poses are located closely

-1 o ePy together and there exist constraints between subsequses po

Our parameterization maintains the simple form of thgsulting from odometry or scan-matching. Further comstisa
Jacobians which enables us to perform the update of e&fﬁween arblltrary node_s result from qbservgtlons whe_rs{ew
parameter variable individually (as can be seen in Eq. (27)j"9 @ place in the environment. In this setting, we build ou
Note that in case one uses a tree that is degenerated to a fidfameterization tree as follows:
this parameterization is equal to the one proposed by OlsoA) We assign a unique id to each node based on the
et al. [13]. In case of a non-degenerated tree, our approach timestamps and process the nodes accordingly.
offers several advantages as we will show in the experirhent2) The first node is the root of the tree (and therefore has
section of this paper. no parent).

The optimization algorithm specifies how to update the3) As the parent of a node, we choose the node with the
nodes but does not Specify the order in which to process smallest id for which a constraint to the current node
the constraints. We can use our tree parameterization to sor €Xists.
the constraints which allows us to reduce the computationalThis tree can be easily constructed on the fly. The Fig-
complexity of our approach. ures 2 (a) and (b) illustrates graphs and the corresponding

To compute the residual of a constraifjti), we need to trees. This tree has a series of nice properties when agplyin
know the rotational component of the nodéThis requires to our optimization algorithm to find a minimal error configura-
traverse the tree up to the first node for which the rotationt®n of the nodes. These properties are:
component is known. In the worst case, this is the root of thes The tree can be constructed incrementally: when adding
tree. a new node it is not required to change the existing tree.

Let thelevel of a node be the distance in the tree betweens In case the robot moves through nested loops, the inter-
the node itself and the root. Lef; be the node in the path of action between the updates of the nodes belonging to the
the constraint(j, ) with the smallest level. The level of the  individual loops depends on the number of nodes the loops
constraint is then defined as the levelz0f. have in common.

Azxp = dwy-s(xg,i,7) - Q

where the value of(xy, j, i) is +1 or —1 depending on where
the parameteg;, is located on the patt®;;:

s(xk, J,1)



« When retraversing an already mapped area and addir [ Cjﬁf}) [‘1—‘11
constraints between new and previously added nodes, tt /7///‘ TN ’5*:] ‘ h)
length of the path in the tree between these nodesis sma  / Su/

This means that only a small number of nodes need to b ﬁ/ 3
updated. 'ZZ§4
el

The second property is illustrated in Figure 2 (a). The twc /‘/& e
loops in that image are only connected via the constrair V\M
between the nodes 3 and 7. They are the only nodes that & ?L‘\"I
updated by constraints of both loops. >

The third property is illustrated in Figure 2 (b). Here, th&!9- 3. The map of the Intel Research Lab before (left) anerafight)
robot revisits a loop. The nodes 1 to 4 are chosen as the par&hgc " of eur algorithm (1000 nodes, runtirds).
for all further nodes. This results in short paths in the when
updating the positions of the nodes while retraversing kmow

VIl. EXPERIMENTS

areas.
The complexity of the approach presented so far depends:rh's section is designed to evaluate the properties of our

on the length of the trajectory and not on the size of tHee parameterization for Iearniqg mgximum IiI§eIihood ap
environment. These two quantities are different in case th& first show that such a technique is well suited to generate

robot revisits already known areas. This becomes importaﬂﬁcurate occupancy grid maps given laser range data and

whenever the robot is deployed in a bounded environment quom_etry from 6} real roblot.dSecond, we ]Pm\r/]'de 5|mulat|o_n
a long time and has to update its map over time. This is al§gpernments on large-scale datasets. We furthermore qrovi

known as lifelong map learning. Since our parameterizatiGhCOMParison between our approach, Olson's algorithm [13],

is not restricted to a trajectory of sequential poses, weeha@'d multi-level relaxation by Freset al. [5]. Finally, we
the possibility of a further optimization. Whenever the abb analyze our approach and investigate properties of the tree

revisits a known place, we do not need to add new nOdesp[@rameterization in order to explain why we obtain better
the graph. We can assign the current pose of the robot to rgﬁults then the other methods.
already existing node in the graph. _
Note that this can be seen as an approximation similar o R€&l World Experiments
adding a rigid constraint neglecting the uncertainty of the The first experiment is designed to illustrate that our ap-
corresponding observation. However, in case local mags, (eproach can be used to build maps from real robot data. The
grid maps) are used as nodes in the network, it makes se@gél was to build an accurate occupancy grid map given the
to use such an approximation since one can localize a rolser range data obtained by the robot. The nodes of our graph
in an existing map quite accurately. correspond to the individual poses of the robot during data
To also avoid adding new constraints to the network, we c&gquisition. The constraints result from odometry and from

refine an existing constraint between two nodes in case ofl pair-wise matching of laser range scans. Figure 3 depict
new observation. Given a constraﬁjl}) between the nodep two maps of the Intel Research Lab in Seattle. The left one is
. . (2) constructed from raw odometry and the right one is the result
and ¢ in the graph and a new constra@ﬁ based on the . .
. : . obtained by our algorithm. As can be seen, the corrected map
current observation. Both constraints can be combined to R ; . . .
. . . L . . shows no inconsistencies such as double corridors. Note tha
single constraint which has the following information nivatr

this dataset is freely available on the Internet.

and mean:
Q; = Q;i)JFQ;?) (29) B. Smulated Experiments _ _ |
1,001 (1) 2) <2 The second set of experiments is designed to measure the
050 = (705 + Q577 - 0577) (30) performance of our approach quantitatively. Furthermose,

compare our technique to two current state-of-the-art SLAM

As a result, the size of the problem does not increase whgpproaches that work on constraint networks, namely multi-
revisiting known locations. As the experiments illustratés |evel relaxation by Freset al. [5] and Olson’s algorithm [13].
node reduction technique leads to an increased convergeficéhe experiments, we used the two variants of our method:
speed. the one that uses the node reduction technique described in

In case the input to our algorithm is an arbitrary grapBection VI and the one that maintains all the nodes in the
and no natural order of the nodes is provided, we compuieaph.
a minimal spanning tree to define the parameterization.eSinc In our simulation experiments, we moved a virtual robot
no additional information (like consecutive poses acawgdi on a grid world. An observation is generated each time the
to a trajectory) is available, we cannot directly infer whic current position of the robot was close to a previously gtit
parts of the graph are well suited to form a subtree in thecation. We corrupted the observations with a variablewamo
parameterization tree. The minimal spanning tree appeafsnoise for testing the robustness of the algorithms. We
to yield comparable results with respect to the number simulated different datasets resulting in graphs with a lpem
iterations needed for convergence in all our experiments. of constraints between around 4,000 and 2 million.



Fig. 4. Results of Olson’s algorithm (first row) and our agmio (second row) after 1, 10, 50, 100, 300 iterations for aaordt with 64k constraints. The
black areas in the images result from constraints betwedeswhich are not perfectly corrected after the corresponiieration (for timings see Figure 6).
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Fig. 5. The result of MLR strongly depends on the initial cgofation of Fig. 7. The average amplitude of the oscillations of the sodiee to the
the network. Left: small initial pose error, right: largetial pose error. antagonistic effects of different constraints.

Figure 4 depicts a series of graphs obtained by Olsonimesper iteration than our approach. However, this restricted
algorithm and our approach after different iterations. As ¢ variant has still the same converge speed with respect to the
be seen, our approach converges faster. Asymptoticalty, baumber of iterations than Olson’s unrestricted techniche.
approaches converge to a similar solution. can be seen from that picture, our node reduction technique

In all our experiments, the results of MLR strongly despeeds up the computations up to a factor of 20.
pended on the initial positions of the nodes. In case of a good
starting configuration, MLR converges to an accurate smuti
similar to our approach as shown in Figure 5 (left). Otheewis
it is likely to diverge (right). Olson’s approach as well asro  The experiments presented above illustrated that our algo-
technique are more or less independent of the initial posesrishm offers significant improvements compared to both othe
the nodes. techniques. The goal of this section is to experimentalintpo

To evaluate our technique quantitatively, we first measuredt the reasons for these improvements.
the error in the network after each iteration. The left image The presented tree parameterization allows us to decompose
of Figure 6 depicts a statistical experiments over 10 nets/orthe optimization of the whole graph into a set of weakly
with the same topology but different noise realizations. Aisteracting problems. A good measure for evaluating the
can be seen, our approach converges significantly faster tlrateraction between the constraints is the average nurhber
the approach of Olsoat al. For medium size networks, bothof updated nodes per constraint. For example, a network with
approaches converge asymptotically to approximatively tl large value of has typically a higher number of interacting
same error value (see middle image). For large networksinstraints compared to networks with low valued.oi all
the high number of iterations needed for Olson’s approaelkperiments, our approach had a value between 3 and 7. In
prevented us from showing this convergence experimentaltpntrast to that, this values varies between 60 and 17,000 in
Due to the sake of brevity, we omitted comparisons to EKF ai@son’s approach on the same networks. Note that such a high
Gauss Seidel relaxation because Olsbal. already showed average path length reduces the convergence speed of ©lson’
that their approach outperforms such techniques. algorithm but does not introduce a higher complexity.

Additionally, we evaluated in Figure 6 (right) the average The optimization approach used in this paper as well as
computation time per iteration of the different approacheis Olson’s algorithm updates for each constraint the inedlv
As a result of personal communication with Edwin Olsomodes to minimize the error in the network. As a result,
we furthermore analyzed a variant of his approach which défferent constraints can update poses in an antagonistjc w
restricted to spherical covariances. It yields similarcexsn during one iteration. This leads to oscillations in the posi

C. Analysis of the Algorithm
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Fig. 6. The left image illustrates shows the error of our anso@s approach in a statistical experimeat-£ 0.05 confidence). The image in the middle
shows that both techniques converge asymptotically to aheeserror. The right image shows the average executiongenéeration for different networks.
For the 1.9M constraints network, the executing of MLR reggiimemory swapping and the result is therefore omitted.

of a node before convergence. Figure 7 illustrates the geeralgorithm. Our approach converges significantly fastentha
amplitude of such an oscillations for Olson’s algorithm adlw both approaches and yields accurate maps with low errors.
as for our approach. As can be seen, our techniques converges

faster to an equilibrium point. This a further reason for the ACKN_OWLEDGMENT
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our approach per iteration depends linearly on the number /%3S Partly been supported by the DFG under contract number
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